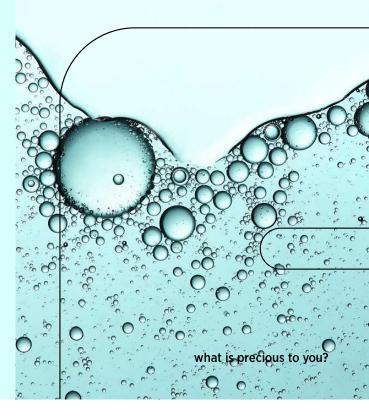


Post Machining Cleaning – How to Pick the Right Surfactant For the Job

Houston STLE Section October 2022

Stephanie Cole Care Chemicals Industrial Lubricants 14.10.2022


what is precious to you?

Todays Takeaway

Challenge your surfactant manufacturers and formulators to design a surfactant that addresses the unique pain points of your customer

Stephanie Cole Care Chemicals Industrial Lubricants 14.10.2022

Agenda

About Clariant

Trends and market drivers

Customizable nonionic surfactants

Case Study

Testing

Overview of results

About Clariant

Trends and market drivers

Customizable nonionic surfactants

Case Study

Testing

Overview of results

About Clariant

About Clariant

Stephanie Cole, Care Che

Trends and market drivers

g – How to Pick the Right Surfactant For the Job Chemicals, Industrial Lubricants , 14.10.2022

Customizable nonionic surfactants

Case Study

Testing

Overview of results

Metal Cleaning Market

Cleaning metal and protecting it against rust or corrosion is important, regardless of if the surface is to be painted or left uncoated

Metal has a reputation for being difficult to clean and a burden to maintain, but many specialized products are emerging to make metal-care tasks easier and more effective

4414

0 00 0, 0 00

......

................

The global metal cleaning

chemicals market size by value is

projected to reach

by 2025

at a CAGR of 5.0%

D 16.5 billion

The metal cleaning market is currently experiencing <u>unprecedented growth</u>; largely due to the rise of precision parts which require more critical levels of clean within more complex geometries

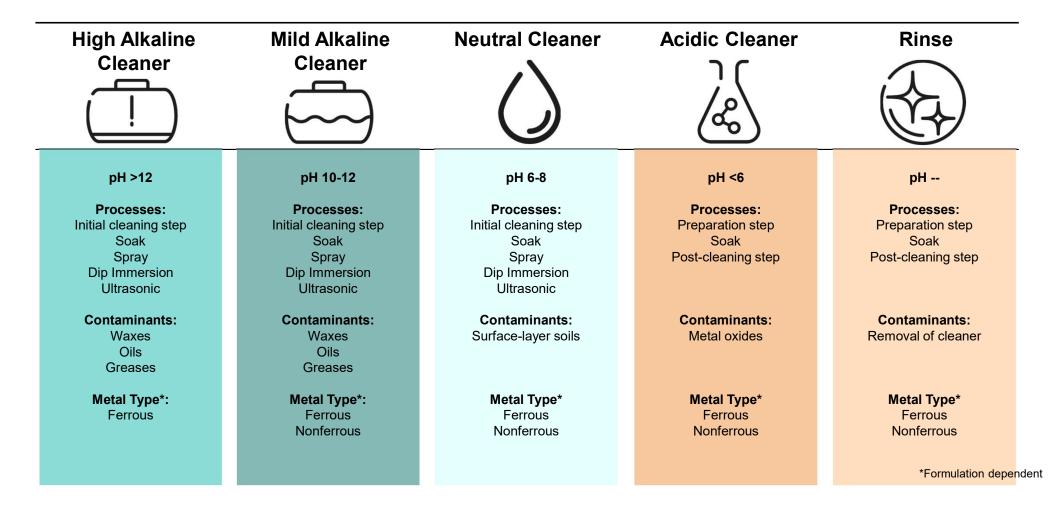
*Markets & Markets Metal Cleaning Chemical report

Variables to Consider

CLEANING PROCESS

Soak · Ultrasonic · Immersion · Spray

POTENTIAL CONTAMINANTS


- \cdot Corrosion inhibitors / rust preventatives \cdot Cutting oils \cdot Metal working fluids
- Burnt hydrocarbons · Metal oxides · Dust / air contaminants · Human contamination

AQUEOUS CLEANER TYPE

High alkaline · Mild alkaline · Neutral · Acidic

Types of Aqueous Cleaners & Applications

About Clariant

Stephanie Cole, Care Che

Trends and market drivers

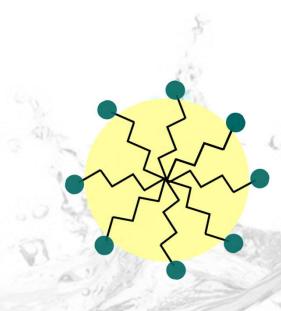
g – How to Pick the Right Surfactant For the Job Chemicals, Industrial Lubricants , 14.10.2022

Customizable nonionic surfactants

Case Study

Testing

Overview of results



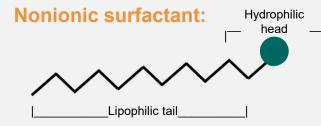
How Surfactants Function

Surfactant: Surface Active Agent

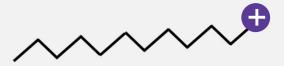
a substance which tends to reduce the surface tension of a liquid in which it is dissolved Hydrophilic

Micelle

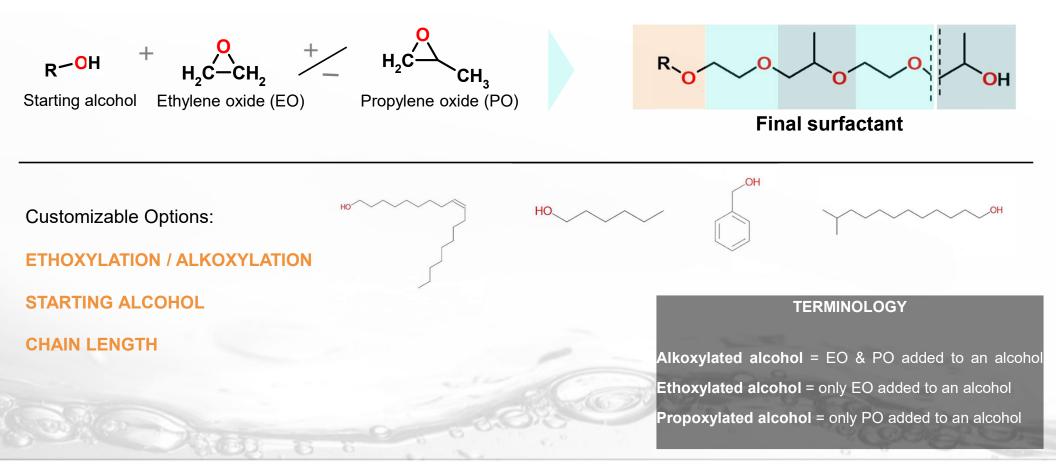
1. Lipophilic tail reaches the soil



2. Soil starts separating from the metal surface


3. Soil detaches from surface inside a micelle

Surfactant types



- Neutral charge
- Emulsification & wetting properties
- Negative chargeLifts and suspends soils

- Positive charge
- Antistatic properties

Components of a Nonionic Surfactant & How They're Made

Surfactant Structure Evaluation

WATER SOLUBILITY

How easy a surfactant is going to be to formulate with

CLOUD POINT

The temperature at which a surfactant's cleaning performance will decrease

What contaminants your surfactant will be capable of removing & how it will remove them

About Clariant

Stephanie Cole, Care Cher

Trends and market drivers

ng – How to Pick the Right Surfactant For the Job Chemicals, Industrial Lubricants , 14.10.2022

Customizable nonionic surfactants

Case Study

Testing

Overview of results

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
РО	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13
*Cloud Point (5g in 25g	, 25% BDG					

*Cloud Point (5g in 25g, 25% BDG

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
PO	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13
*Cloud Point (5g in 25g,	25% BDG					

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
Starting alcoholAromatic <c10< th="">EO<5 molsPO0Water Soluble (5% in DMW)YesCloud Point>100°C</c10<>	0	0	0	0	<5 mols	
Soluble	Yes	Yes	No	No	Yes	Yes
		>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13
*Cloud Point (5g in 25g,	25% BDG	I				

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
PO	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13
*Cloud Point (5g in 25g,	25% BDG					

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
PO	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13
*Cloud Point (5g in 25g,	, 25% BDG	I		l		

_

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols	<5 mols	>5 mols	>5 mols
РО	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13

*Cloud Point (5g in 25g, 25% BDG

Case Study: Evaluate Surfactant Physical Characteristics

	Nonionic Surfactant A	Nonionic Surfactant B	Nonionic Surfactant C	Nonionic Surfactant D	Nonionic Surfactant E	Nonionic Surfactant F
Starting alcohol	Aromatic <c<sub>10</c<sub>	Linear <c<sub>10</c<sub>	Linear >C ₁₀	Branched >C ₁₀	Branched >C ₁₀	Linear >C ₁₀
EO	<5 mols	<5 mols	<5 mols <5 mols >5 mols		>5 mols	
PO	0	0	0	0	0	<5 mols
Water Soluble (5% in DMW)	Yes	Yes	No	No	Yes	Yes
Cloud Point (1% in DMW)	>100°C (>212°F)	>100°C (>212°F)	70 - 72°C* (158 -162°F)	67 - 69°C* (152 -156°F)	73 - 75°C (163-167°F)	39 - 42°C (102 - 108°F)
HLB	12	14	11	11	14	13

_

*Cloud Point (5g in 25g, 25% BDG

About Clariant

Trends and market drivers

Customizable nonionic surfactants

Case Study

Testing

Overview of results

Surfactant Performance Tests

Proof of concept degreasing test to evaluate surfactant's rough degreasing / cleaning power

EMULSIFICATION / OIL REJECTION

Introduction of foreign oils to evaluate surfactant's emulsification or oil rejection properties

Agitation of a solution via apparatus to measure foam growth & decay rates

Validate Performance- Degreasing Procedure Evaluation of a Surfactant's Cleansing Power

	Equipmen	t		Test Procedure	*To be performed in duplicate
	304 SS 1"x	3"x.032" coupon		Clean two coupons with IPA and we	igh individually, once dry
	Stir bar		prep	Apply three coats of soil to each co	upon, ensuring each is covered completely with an
	Stir plate –	take note of RPM	Id uo	even layer of soil	upon, ensuring each is covered completely with an
	150 mL bea	aker	Coupo	Bake coupons at 40°C (105°F) for 3	0 minutes
	Soil Formu	lation	0	Allow coupons to cool to RT and we	igh each to determine amount of soil applied
	25-35%	Water displacing commodity chemical	<u>م</u>		
-	25-35%	Anti-wear hydraulic oil (ex: AW 32)	prep	Dilute cleaner formulation and cont	of to 5% with tap water
	25-35%	Cutting, grinding fluid that is oil based (ex: honing oil)	ner	Transfer 115 g of each solution to in	dividual 150 mL beakers with stir rods
	1-4%	Carbon black	Clea	Allow cleaner and control solutions	to mix gently without vortex formation
	1-4%	Iron oxide	5	Gently place coupons in respective	solutions, ensuring not to disturb stir bar
	Cleaner Fo	rmulation	atic	Allow courses to cook for 20 minut	as as the collutions conthurness over courses
Ē	70-80%	Water	valuation	Allow coupons to soak for 30 minut	es as the solutions gently pass over coupon
Control	1-10%	Alkaline component (ex: NaOH or KOH)	<u>ک</u> ہ ا	Remove coupons from respective b	eakers and quickly dunk in clean tap water 3X
ပိ	2-10%	Coupling agent (ex: glycol)	Cleaning	Allow coupons to dry for 30 minute	s in 105°C oven
	2-10%	Surfactant	Clea	Allow coupons to cool to RT and we respective percentages of soil remo	eigh each coupon for final masses to determine the oved

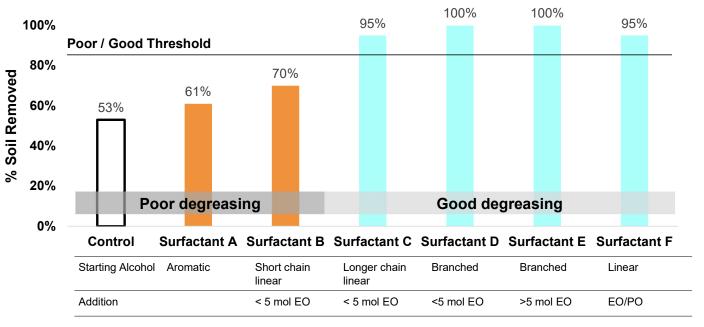

Validate Performance- Degreasing Results Evaluation of a Surfactant's Cleansing Power

Photo 1: degreasing test of one surfactant in process, in foreground, and another surfactant starting in background

Photo 2: degreasing test completed for two surfactants and their respective coupons after simulated rinsing

CLEANING IMPLICATIONS:

- Long chain, linear and branched surfactants (C,D,E & F) out-performed short chain, linear and aromatic surfactants (A & B)
- Branched alcohols (D & E) slightly outperformed linear equivalents (C & F)

Validate Performance- Emulsification/Oil Rejection Procedure How a Surfactant will Handle Introduction of a Foreign Oil

Experiment Steps/Considerations

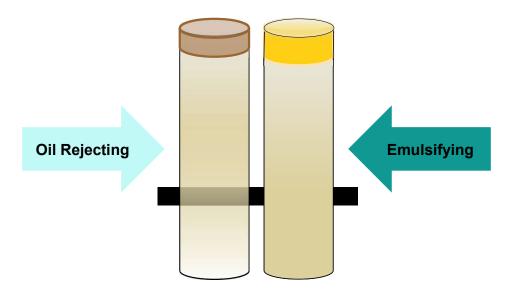
Prepare a 1% surfactant + DI water solution

Fill a 100 mL graduated cylinder with 97 mL of surfactant solution

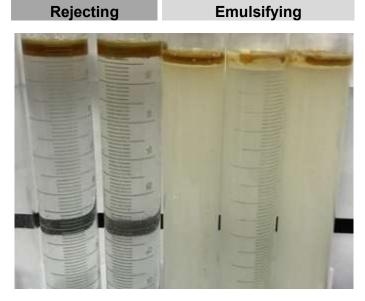
Add 3 mL of honing oil

Invert closed graduated cylinder 10X

Allow solution to rest


Begin recording visual observations of oil-cleaner solution interaction

- 1. Initial observation
- 2. 15 min
- 3. 30 min
- 4. 1 hour (final reading)

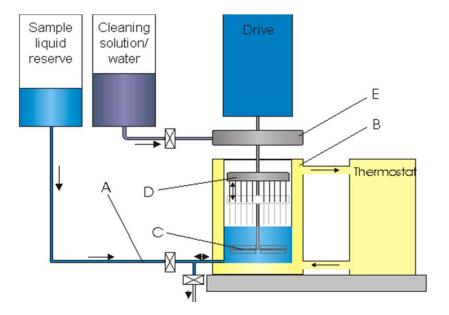

General observation rules:

- If the solution below the interface is clear, surfactant has poor emulsification properties but good oil rejection properties
- If the layer below the interface is slightly hazy, surfactant moderate emulsification properties
- If the layer below the interface is opaque, surfactant has excellent emulsification properties

Ideal for systems with skimmers in place for removing oil contaminants so a cleaner can be recycled Ideal for systems in which a part is being submerged, like dip <u>immersion</u> and ultrasonic cleaning systems

Validate Performance- Emulsification / Oil Rejection Procedure How a Surfactant will Handle Introduction of a Foreign Oil

Photo 1: Emulsification / oil rejection test results for five surfactants. The two surfactants on the left show strong oil rejecting properties; the three surfactants on the right show strong emulsification properties.


		Results:
Surfactant A	Aromatic, short chain, low EO	Rejecting
Surfactant B	Linear, short chain, low EO	Rejecting
Surfactant C	Linear, long chain, low EO	Emulsifying
Surfactant D	Branched, long chain, low EO	Rejecting
Surfactant E	Branched, long chain, high EO	Emulsifying
Surfactant F	Linear, long chain, high EO, low PO	Emulsifying

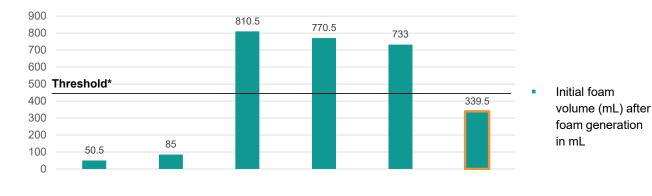
CLEANING IMPLICATIONS:

- Long chain, linear surfactants, like C, are better at emulsifying oil than short chain, linear and aromatic surfactants (A & B)
- Higher amounts of EO seem to improve emulsification properties (D vs. E)

Validate Performance- Foam Build & Decay Procedure A Surfactant's Suitability for Spray Processes

Testing Parameters		
Temperature	20°C	
Fill Volume	250 mL	
Rotor Speed	1200 rpm	
Surfactant Concentration	0.1%	
Foam Generation		
Stirring Interval	10 s	
Number of Stirring Intervals	30 x	
Foam Decay		
Measuring	30 s	
Total Time	10 min	

SITA Foam Analyzer: R-2000


Surfactant A

Surfactant B

Validate Performance- Foam Build & Decay Results A Surfactant's Suitability for Spray Processes

Surfactant E

Surfactant F

Surfactant C

0.00 -0.06 -0.20 -0 11 -0.40 Rate of decay -0.60 (mL/sec) -0.80 -0.67 -0.72 -1.00 -1.20 -1.40 -1.28 -1.33 -1.60

Surfactant D

Results:

Surfactant A	Low
Surfactant B	Low
Surfactant C	High
Surfactant D	High
Surfactant E	High
Surfactant F	Low

CLEANING IMPLICATIONS:

- Long chain, linear & branched surfactants generate more foam
- Increasing EO slows build and increases decay
- PO significantly suppresses foam generation

ing – How to Pick the Right Surfactant For the Job Chemicals, Industrial Lubricants , 14.10.2022

Stephanie Cole, Care Chem

About Clariant

Trends and market drivers

Customizable nonionic surfactants

Case Study

Overview of results

Overview

		Addition of Alkoxylates			
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
	Solvent-type properties	Disperses contaminants the in solution	Works well with mechanical action	Improves emulsification properties	Lowers foam generation
Cleaning Implications		Improved wetting & rinsing	May require higher amounts of a coupler	Increases operating temperatures	
				Disperses contaminants the in solution	

Application			
Degreas	ng-chain, linear, and branched surfactants are the best performers at degreasing		
	Long-chain, linear & branched surfactants generate more foam		
Foam	ng PO significantly suppresses foam generation		
	Aromatics as starting alcohols lead to lower foaming surfactants		
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants		
Emulsificat	on Higher amounts of EO improves emulsification properties		

Overview

	Starting Alcohol			Addition of	Alkoxylates
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
Cleaning Implications	Solvent-type properties	Disperses contaminants the in solution Improved wetting & rinsing	Works well with mechanical action May require higher amounts of a coupler	Improves emulsification properties Increases operating temperatures Disperses contaminants the in solution	Lowers foam generation

Application			
Degreasing	Degreasing		
	Long-chain, linear & branched surfactants generate more foam		
Foaming	PO significantly suppresses foam generation		
	Aromatics as starting alcohols lead to lower foaming surfactants		
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants		
Emulsification	Higher amounts of EO improves emulsification properties		

Overview

Starting Alcohol				Addition of	Alkoxylates
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
Cleaning Implications	Solvent-type properties	Disperses contaminants the in solution	Works well with mechanical action	Improves emulsification properties	Lowers foam generation
		Improved wetting & rinsing	May require higher	Increases operating temperatures	
			amounts of a coupler	Disperses contaminants the in solution	

Application				
Degreasing Long-chain, linear, and branched surfactants are the best performers at degreasing				
	Long-chain, linear & branched surfactants generate more foam			
Foaming	PO significantly suppresses foam generation			
	Aromatics as starting alcohols lead to lower foaming surfactants			
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants			
Emulsification	Higher amounts of EO improves emulsification properties			

Overview

Starting Alcohol			Addition of	Alkoxylates	
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
	Solvent-type properties	Disperses contaminants the in solution	Works well with mechanical action	Improves emulsification properties	Lowers foam generation
Cleaning Implications		Improved wetting & rinsing	May require higher amounts of a coupler	Increases operating temperatures	
				Disperses contaminants the in solution	

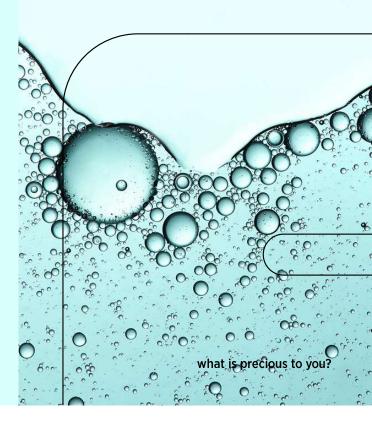
Application			
Degreasing	Degreasing Long-chain, linear, and branched surfactants are the best performers at degreasing		
	Long-chain, linear & branched surfactants generate more foam		
Foaming	PO significantly suppresses foam generation		
	Aromatics as starting alcohols lead to lower foaming surfactants		
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants		
Emulsification	Higher amounts of EO improves emulsification properties		

Overview

	Starting Alcohol				Alkoxylates
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
	Solvent-type properties	Disperses contaminants the in solution	Works well with mechanical action	Improves emulsification properties	Lowers foam generation
Cleaning Implications		Improved wetting & rinsing	May require higher amounts of a coupler	Increases operating temperatures	
				Disperses contaminants the in solution	

Application			
Degreasing	ng-chain, linear, and branched surfactants are the best performers at degreasing		
	Long-chain, linear & branched surfactants generate more foam		
Foaming	PO significantly suppresses foam generation		
	Aromatics as starting alcohols lead to lower foaming surfactants		
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants		
Emulsification	Higher amounts of EO improves emulsification properties		

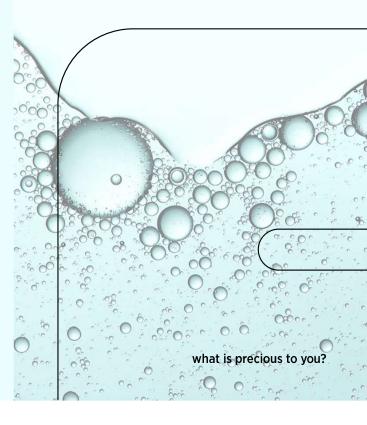
Overview


Starting Alcohol				Addition of	Alkoxylates
	Aromatics	Branched	Long Chain	Ethoxylation (EO)	Propoxylation (PO)
	Solvent-type properties	Disperses contaminants the in solution	Works well with mechanical action	Improves emulsification properties	Lowers foam generation
Cleaning Implications		Improved wetting & rinsing	May require higher amounts of a coupler	Increases operating temperatures	
				Disperses contaminants the in solution	

Application			
Degreasing	Long-chain, linear, and branched surfactants are the best performers at degreasing		
	Long-chain, linear & branched surfactants generate more foam		
Foaming	PO significantly suppresses foam generation		
	Aromatics as starting alcohols lead to lower foaming surfactants		
	Long chain, linear surfactants are better at emulsifying oil than short chain, linear and aromatic surfactants		
Emulsification	Higher amounts of EO improves emulsification properties		

Post Machining Cleaning – How to Pick the Right Surfactant For the Job

Challenge your surfactant manufacturers and formulators to design a surfactant that addresses the unique pain points of your customer



Stephanie Cole Clariant Corporation Sr. Formulation Chemist Stephanie.cole@clariant.com 704-840-9286

Stephanie Cole Care Chemicals Industrial Lubricants 14.10.2022

Disclaimer

This information corresponds to the present state of our knowledge and is intended as a general description of our products and their possible applications. Clariant makes no warranties, express or implied, as to the information's accuracy, adequacy, sufficiency or freedom from defect and assumes no liability in connection with any use of this information. Any user of this product is responsible for determining the suitability of Clariant's products for its particular application. *Nothing included in this information waives any of Clariant's General Terms and Conditions of Sale, which control unless it agrees otherwise in writing. Any existing intellectual/industrial property rights must be observed. Due to possible changes in our products and applicable national and international regulations and laws, the status of our products could change.

© 2022 Clariant International Ltd, Rothausstrasse 61, 4132 Muttenz, Switzerland ® Product and service marks protected by Clariant Material Safety Data Sheets providing safety precautions, that should be observed when handling or storing Clariant products, are available upon request and are provided in compliance with applicable law. You should obtain and review the applicable Material Safety Data Sheet information before handling any of these products. For additional information, please contact Clariant.

*For sales to customers located within the United States and Canada the following applies in addition :

NO EXPRESS OR IMPLIED WARRANTY IS MADE OF THE MERCHANTABILITY, SUITABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE OF ANY PRODUCT OR SERVICE.